

FEEDING

- "Eat": Gr. -phagy; Lt. -vore
- Your food may not wish to be eaten!
- DIET & MORPHOLOGY
- FOOD CAPTURE
- MECHANICAL PROCESSING

Niche: role played in a community (grazer, predator, scavenger, etc.)

Some organisms have specialized niches so as to:

Optimal foraging model: Need to maximize benefits (energy/nutrients) while minimizing costs (energy expended/risks)

FOOD CAPTURE SPECIALIZATIONS

- -Fluid Feeding
- -Suspension & Deposit Feeding
- -Grazers & Browsers
- -Predation: Ambush & Attraction
- -Venoms
- -Tool Use & Team Efforts

etc.

White Rhino (Br Black R Larger than black rhino. Large bull reaching weights of 2500 kg. Grazer: have a broad flat mouth which aids in feeding off large quantities of grass

Head posture faces downward so its mouth is always close to the ground while grazing.

Grazers & Browsers ked-lip Rhino)

A large bull weighs around 1000 kg. Browser: have a small hooked shaped mouth for feeding on trees and shrubs

Head posture is face upward, so there is no need for it to lift its head when feeding off trees.

Ambush **Predators** Crab & trap door spiders, Komodo dragons, lions, Works best if animal has

<text>

• Rattlesnakes consume VERY large prey.

Tool Use

- Galapagos finches, ravens, & Egyptian vultures
- Chimps & sea otters

Digestion

- The hydrolysis (breakdown) of large food molecules (polymers) into small organic subunits (monomers).
- The monomers may then be used for:
- Metabolic fuel (cellular respiration \rightarrow ATP & heat) or
- Subunits to build new polymers

□ Hydrolysis is catalyzed by enzymes

May be intracellular or extracellular

Hydrolytic Enzymes

- Hydrolysis reactions catalyzed by enzymes enzyme names end with "-ase"
- Amylase: hydrolyze carbohydrates
- Protease: hydrolyze proteins
- Peptidase: hydrolyze peptides
- Lipase: hydrolyze lipids

Hydrolytic Enzymes

- · Most plant material is largely cellulose
- Yet no animal has enzymes that can digest cellulose
 - Most herbivores depend upon symbioses with **cellulytic protists** in their guts
- In turn, the cellulytic protists depend upon symbioses with bacteria to produce the actual enzymes

Internal Digestion & Food Processing

- 1. Ingestion
- Consuming food
- 2. Physical disruption
- Mastication, dissolution, denaturation, emulsificationMotility
 - Swallowing, peristalsis, segmentation, defecation
- 4. True digestion
- Hydrolysis of polymers into monomers
- 5. Absorption
- Moving nutrients from G.I. Tract into circulatory system
- 6. Assimilation
 - Incorporate nutrient molecules into tissues

Ingestion for Internal Digestion

- 1. Ciliary (or flagellar) motility
- 2. Oral appendages
 - a. Ciliary
 - b. Grasping / Sweeping
- 3. Protrusable / prehensile structures
 - a. Pharynxb. Jaws
 - D. Jaws
- 4. Swallowing
 - a. Ram / Gravity / Lunge / Suction
 - b. Pharyngeal / Ratcheting jaws
 - c. Lingual

Vertebrate Digestive System • Alimentary Canal (humans: 26-foot long tube)

- Mouth
- Pharynx - Esophagus
- gastrointestinal [G.I.] tract ("gut")
 - Stomach
 - Small Intestine
 - · Large Intestine
- · Accessory Organs
- Salivary Glands
- Liver & Gall Bladder
- Pancreas

Liver to Gall Bladder: Bile Salts: Fat Emulsifier Liver produces bile salts & pigments. Bile is stored & released by Gall Bladder into Small Intestine. Emulsify: Bile salts break large fat globs into small droplets (detergent action).

Carbohydrate Digestion — Summary

- 1. Hydrolysis of polysaccharides (poly-glucose) starts with **salivary amylase**.
- Minor significance amylase denatured by gastric acid.
 2. Pancreatic amylase in duodenum & jejunum
- hydrolyzes polysaccharides into maltose & maltriose. **3. Brush border enzymes** hydrolyze tri-/disaccharides
- Brush border transportars absorb monosaccharides
 Brush border transportars absorb monosaccharides
- **4. Brush border transporters** absorb monosaccharides by active cotransport into hepatic portal vein.
- Insulin dependent: monosaccharides taken up by liver for glycogenesis, or circulate as energy substrate for glycolysis or lipogenesis.

Protein Digestion — Summary

- 1. Proteins are denatured by gastric acid in stomach.
- 2. Hydrolysis of exposed polypeptides starts with **pepsin** in gastric juice under acidic pH.
- Pancreatic proteases & peptidases, plus brush border peptidases in duodenum & jejunum hydrolyze poly-/ oligopeptides into tri-/dipeptides & amino acids.
- 4. Brush border transporters absorb tri-/dipeptides & amino acids into mucosal epithelia. Intracellular peptidases hydrolyze tri-/dipeptides into amino acids. Amino acids absorbed into hepatic portal vein.
- Insulin dependent: amino acids taken up by liver for gluconeogenesis, or circulate as substrate for protein synthesis

Lipid Digestion — Summary

- 1. Fats & oils are *emulsified* by **bile salts** (detergent) in duodenum & jejunum.
- Pancreatic lipases in duodenum & jejunum hydrolyze triglycerides into monoglycerides & fatty acids.
- Monoglycerides & fatty acids, plus cholesterol, coalesce with bile salts to form micelles.
- 4. Brush border transporters absorb micelles into mucosal epithelia. Intracellular liposynthases condense monoglycerides & fatty acids into new triglycerides. Triglycerides & cholesterol are bound to carrier proteins to form chylomicron lipoprotein.
- Chylomicrons are absorbed into the lacteal and systemic circulation. Lipoprotein-lipase of vessel endothelia releases fatty acids & glycerol for tissue lipogenesis.

	(a) Carbohydrate digestion	(b) Protein digestion	(c) Nucleic acid digestion	(d) Fat digestion
Oral cavity, pharynx, esophagus	Polysaccharides (starch, glycogen) Salivary amylase Y Smaller polysaccharides, maltose			
Stomach		Proteins Pepsin T Small polypeptides		
Lumen of small intestine	Polysaccharides Pancreatic amylases Maltose and other disaccharides	Polypeptides Trypsin, Chymotrypsin Smaller polypeptides Aminopeptidase, Carboxypeptidase Amino acids	DNA, RNA Nucleases Nucleolides	Fat globules Bite salts Fat droplets (emulsified) Lipase Giycerol, fatty acids, glycerides
Epithelium of small intestine (brush border)	Disaccharidases Monosaccharides	Small peptides Dipeptidases Amino acids	Nucleosides Nucleosides	

- House wrens lengthen 22% in winter
- Mammals lactating
- All eat more too

