Chemical matter is recycled

- Some new matter my enter an ecosystem from dust or sediment. Or fixed from air molecules.
 - Fixation: conversion from unavailable state to available state
- Some may leave an ecosystem by erosion or elution or return to the air.
- But most cycles among **pools** within the ecosystem.
 - If some elements leave faster than replaced, pools become depleted.

General model of nutrient cycling

• the main reservoirs of elements and the processes that transfer elements between reservoirs

Carbon cycle

- Carbon dioxide gas (CO₂) in atmosphere, and bicarbonate (HCO₃⁻) in aquatic media.
- Producers use energy (sunlight) to convert CO₂ (abiotic pool) into organic biomass (biotic pool)
 - -Carbon fixation

$$n(CO_2) + n(H_2O) + energy \rightarrow (CH_2O)_n$$

Primary Productivity

- The total organic matter produced by all autotrophs in the ecosystem is its
 Gross Primary Production (GPP).
- Part of the GPP is used by the producers for their own respiration.
- Only the remaining primary production increases the total ecosystem biomass and is available for consumers.
 - = Net Primary Production (NPP)

Carbon cycle

- Consumers eat carbon compounds (sugars, proteins, fats, nucleic acids) made by producers
- Respiration produces CO₂ as waste; released back into abiotic pool

$$(CH_2O)_n \rightarrow n(CO_2) + n(H_2O) + energy$$

- Carbon fixation/respiration tied to energy flow
 - A Biomass trophic pyramid reflects energy pyramid

• NOTE: pyramid of biomass production - Actual standing crop biomass may differ Trophic level Tertiary consumers Secondary consumers Primary producers (a) a bog at Silver Springs, Florida. • Carbon fixation tied to energy flow • Biomass trophic pyramid reflects energy pyramid

Carbon cycle NOTE: pyramid of biomass production - Actual standing crop biomass may differ Trophic level Dry weight (g/m²) Primary consumers (zooplankton) Primary producers (phytoplankton) (b) English Channel marine ecosystem Figure 55.12 Carbon fixation tied to energy flow Biomass trophic pyramid reflects energy pyramid

Combustion

- Dead organisms return CO₂ to atmosphere when burned
 - Wood
 - Fossil fuels
- Again: (CH₂O)_n → n(CO₂) + n(H₂O) + energy

Geological pools used faster than they are replaced

Nitrogen cycle

- Important component of proteins and nucleic acids
- N₂ forms 79% of atmospheric gas
- Nitrogen fixation: N₂ gas must be converted to other nitrogen compounds

Bacteria are required for nitrogen cycle

- Nitrogen fixing bacteria:
 - N_2 gas \rightarrow ammonia (NH_4^+)
- Nitrifying bacteria:
 - NH₄⁺ → nitrite (NO₂⁻) → nitrate (NO₃⁻)
- Plants use nitrate to make organic amines

Root nodules containing nitrogen-fixing bacteria

Bacteria return nitrogenous waste to atmosphere

- Denitrifying bacteria, decomposers covert NO₃⁻ back into N₂ gas
- · Completes cycle

Rod-shaped and spherical bacteria in compost (colorized SEM)

Human influences on nitrogen cycle

- Industrially made fertilizers account for 30% of fixed nitrogen
- Making fertilizers burns lots of fossil fuels
- Deforestation causes loss through run off
- · Acid rain production

Agriculture and Nitrogen Cycling

- Agriculture constantly removes nutrients from ecosystems that would ordinarily be cycled back into the soil
- Necessitates adding nitrogen-fertilizers back

Acid rain North American and European ecosystems downwind from industrial regions have been damaged by rain and snow containing nitric and sulfuric acid

Mineral nutrient cycles

- · E.g., phosphorus, calcium, potassium, iron
- Biological demand is low, but sources usually dependent upon erosion from regional rocks and transport in surface water

Limiting nutrient

- Productivity in a given ecosystem is limited by the availability of all vital nutrients
- The particular element whose availability is restricting greater productivity is the **limiting nutrient**
- E.g.,
 - Carbon, oxygen, & hydrogen are needed in great quantities, but are also tremendously available: ∴ rarely limiting.
 - Most trace metals are rare in the environment, but organisms don't need much of them: ∴ seldom limiting.
- Nitrogen and phosphorous are the most typical limiting nutrients in many ecosystems

Iron-limitation in oceanic ecosystems · Offshore regions far from terrigenous runoff, isolated from mineral sources Table 55.1 **Nutrient Enrichment Experiment** for Sargasso Sea Samples Relative Uptake of ¹⁴C by Cultures **Nutrients Added to Experimental Culture** None (controls) Nitrogen (N) + phosphorus (P) only 1.10 N + P + metals (excluding iron) 1.08 N + P + metals (including iron) 12.90 N + P + iron 12.00 *14C uptake by cultures measures primary production Data from Menzel and Ryther, Deep Sea Research 7(1961): 276-281

Cultural (Anthropogenic) Eutrophication

- Sewage or fertilizer runoff adds limiting nutrients to aquatic ecosystems
- · Algae stimulated to overgrow
 - Benthic algae overgrow benthic invertebrates
 - Filamentous algae clog gills
 - Thick growth dampens flow or reduces mixing
 - Nocturnal algal respiration consumes all dissolved oxygen
- Loss of diversity & community structure

