QUANTIZATION OF ANGULAR MOMENTUM

Recall that classically the angular momentum is given by L =r x p.
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We now define the angular momentum operator L2 by:
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Thus, the above equation can be written as:
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From which it follows that,
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Likewise, it can also be shown that the z — component of angular momentum is
also quantized and given by:
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Thus, for all potential energies where U=U(r) the angular momentum will be
quantized and given by the above equations.

SPACE QUANTIZATION

The physical significance of equations (1) and (2) above is that the angular
momentum vector L can only point in those directions in space such that the
projection of L onto the z-axis is one of the values given by equation (2). Thus,
we say that L is space-quantized.




Ex. Consider the case for which l=2.
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Note that the angular momentum vector L never points in the z-direction since
L. must be smaller than the magnitude of L. This is a consequence of the
uncertainty principle for angular momentum that implies that no two
components of L can be known precisely.

From a 3-D perspective L processes around the z-axis so as to trace out a
cone at angle 0 in space.
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Space Quantization of L



