SYLLABUS

Instructor:	Dr. Kejian Shi
e-mail:	shikejian@ fhda.edu
Office Hour:	Thursdays: 11:00am-12:00noon, S16-A

Prerequisites:	Math 1B (with a grade of C or better), or equivalent
Textbook:	CALCULUS - Early Transcendentals, the $8^{\text {th }}$ Ed. by James Stewart
Materials:	A scientific calculator recommended

Attendance: This class is an in-person class. Students are expected to attend all classes on time. Students who are absent more than two times may be dropped from the class. However, it is the students' responsibility to drop by the appropriate deadline. Petitions to drop after the deadline will not be considered by the instructor.

Homework: Homework is the key to success in this class. Plan to devote a minimum of TWO hours to homework for each class lesson.

Quizzes: \quad Three Quizzes (33, 33, and 34 points) are proctored quizzes and will be given in the classroom on quiz days. Quiz problems are like homework problems and lecture examples. No makeup quizzes. The lowest quiz score will be replaced by the average of the two highest quiz scores.

Midterms: Two midterm examinations (100 points each) are proctored exams and will be given in the classroom on the midterm exam days. No makeup exams. The lowest midterm score will be replaced by the percentage of the final exam if the final percentage is higher.

Final Exam: One comprehensive examination is a proctored exam and will be given in the classroom from 1:45pm-3:45pm on Tuesday, March 26, 2024. Any student missing the final will receive an F grade for the course.

Integrity: Any type of cheating is not tolerated. Corresponding school rules will be followed.

Grading:	Distribution		Scale		
			Grade	Points	Percentage
			A+	473-500	95\%-100\%
	Quizzes	100	A	448-472	90\%-94\%
			A-	438-447	88\%-89\%
			B+	423-437	85\%-87\%
			B	398-422	80\%-84\%
	Midterms	200	B-	388-397	78\%-79\%
			C+	373-387	75\%-77\%
			C	323-372	65\%-74\%
			D+	298-322	60\%-64\%
	Final Exam	200	D	288-297	58\%-59\%
		------	D-	273-287	55\%-57\%
	Total	500	F	0-272	0\%-54\%

Tentative Schedule:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Winter 2024} \\
\hline \& MONDAY \& TUESDAY \& WEDNESDAY \& THURSDAY \& FRIDAY \& SATURDAY \& SUNDAY \& Wk \\
\hline Jan \& \& \[
\begin{array}{r}
9 \\
10.1,10.2 \\
\hline
\end{array}
\] \& 10 \& \[
\begin{array}{rr}
11 \\
10.3 \& \\
\hline
\end{array}
\] \& 12 \& 13 \& 14 \& 1 \\
\hline Jan \& 15 \& \& 17 \& \begin{tabular}{|c}
18 \\
11.2 \\
Quiz \#1 \\
3:00pm-3:45pm
\end{tabular} \& 19 \& Last Day to \(\begin{array}{r}20 \\ \text { Add }\end{array}\) \& \begin{tabular}{|c}
21 \\
Last Day to Drop \\
with refund/credit, \\
with no record.
\end{tabular} \& 2 \\
\hline Jan \& \begin{tabular}{c}
22 \\
\begin{tabular}{c}
m L K Holiday \\
No Class
\end{tabular} \\
\hline
\end{tabular} \& \begin{tabular}{c|}
(Census Day) \\
Solutions \\
11.3
\end{tabular} \& 24 \& \(11.4{ }^{25}\) \& 26 \& 27 \& 28 \& 3 \\
\hline \[
\begin{gathered}
\hline \text { Jan } \\
/ \\
\text { Feb }
\end{gathered}
\] \& 29 \& 30
\(11.5,11.6\) \& 31 \& Review
Exam \#1
2:30pm-3:45pm \& Last day to
request \(P / N P\) \& 3 \& 4 \& 4 \\
\hline Feb \& 5 \& Solutions
11.7, 11.8 \& 7 \& \(11.8,11.98\) \& 9 \& 10 \& 11 \& 5 \\
\hline Feb \& 12 \& 11.9 \begin{tabular}{ll}
13 \\
\& \\
\& \\
\hline
\end{tabular} \& 14 \& \begin{tabular}{|c}
15 \\
11.10 \\
Quiz \#2 \\
3:00pm-3:45pm
\end{tabular} \& Lincoln's B-Day
Holday
No Class \& \& nd 18 \& 6 \\
\hline Feb \& \begin{tabular}{|c}
19 \\
Washington's \\
Holday \\
Ho Class
\end{tabular} \& Solutions \({ }^{20}\)
11.10, 11.11 \& 21 \& \& 23 \& 24 \& 25 \& 7 \\
\hline \begin{tabular}{|c|}
\hline Feb \\
\(/\) \\
March \\
\hline
\end{tabular} \& 26 \& \& 28 \& Review
Exam \#2
2:30pm-3:45pm \& Last Day to drop
with a \(W\) \& 2 \& Last day to file
Winter degree or
certificate \& 8 \\
\hline March \& 4 \& Solutions

12.3, 12.4 \& 6 \& \& 8 \& 9 \& 10 \& 9

\hline March \& 11 \& \& 13 \& | 13.2 |
| :---: |
| Quiz \#3 |
| 3:00pm-3:45pm | \& 15 \& 16 \& 17 \& 10

\hline March \& 18 \& Solutions 19
13.3 \& 20 \& $13.4{ }^{21}$
Review \& 22 \& 23 \& 24 \& 11

\hline March \& 25 \&	
FINAL EXAM	
1:45pm-3:45pm	\& 27 \& 28 \& 29 \& 30 \& 31 \& 12

\hline
\end{tabular}

Homework Problems:

Sections	
10.1	$3,5,11,13,19,21,37$
10.2	$3,5,7,11,13,15,17,29,31,33,37,39,43,49,51,57,61,65$
10.3	$7,9,11,15,17,23,25,29,33,37,39,55,57,61,63$
10.4	$1,3,9,13,17,21,23,25,27,29,31,35,37,39,41,45$
11.1	$5,7,9,11,13,17,19,23,27,33,37,45,49,51,57,59,65,70,73,75,77,79,81$
11.2	$5,9,11,15,19,23,29,33,37,39,41,43,45,51,57,59,61,67,75$
11.3	$2,3,7,11,15,17,21,29,35,37,39$
11.4	$1,3,5,7,9,11,15,19,23,27,29,31,33,35,41$
11.5	$3,7,9,13,17,21,23,25,27$
11.6	$1,3,5,7,9,13,19,25,29,31,37,39,43$
11.7	$1,3,5,7,9,11,13,15,17,19,21,23,25,27,29$
11.8	$5,7,11,15,19,23,29,30,32,35$
11.9	$3,5,7,9,13,15,19,25,27,29,31,34,37$
11.10	$4,5,9,11,15,21,25,31,33,35,39,53,55,57,59,61,63$
11.11	$5,7,9,13,19,27$
17.4	$1,3,5,7,9,11$
12.1	$3,5,9,11,13,15,17,23,41,45,47$
12.2	$3,5,7,11,13,19,21,25,26,27,29,31,33,37,41,45,47$
12.3	$3,7,9,13,15,19,23,27,29,33,39,43,47,49,51,55,57$
12.4	$3,7,9,11,13,17,19,23,27,29,31,33,35,37,39,43,45$
12.5	$7,11,13,15,19,21,23,25,27,31,33,35,37,39,41,45,49,51,55,57,59,64,65,67,71,73$
12.6	$3,5,7,9,11,15,17,19,21,28,35,37$
13.1	$1,3,5,7,11,13,15,17,27,29,33,35,37,42,43,45,49$
13.2	$3,5,7,11,13,17,19,21,23,25,33,35,37,41$
13.3	$3,5,7,11,13,17,19,21,25,27,29,30,31,37,43,47,49,53,57$
13.4	$3,5,7,9,13,15,17,19,22,23,25$

Student Learning Outcome(s):

- Analyze infinite sequences and series from the perspective of convergence, using correct notation and mathematical precision.
- Apply infinite sequences and series in approximating functions.
- Synthesize and apply vectors, polar coordinate system and parametric representations in solving problems in analytic geometry, including motion in space.

Office Hours:

W	10:00 AM	11:00 AM	Canvas,Zoom
TH	11:00 AM	12:00 PM	In-Person \quad S-16A
T	10:00 AM	11:00 AM	Zoom,Canvas
M	10:00 AM	11:00 AM	Zoom,Canvas

